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Background

Multivariate time series classification (MTSC) has wide
applications across domains with diverse signal sources.

o Human activity recognition
« Health monitoring

« Remote sensing

1D convolutional kernels show superiority in MTSC tasks.
« 1D-CNNs (e.g., FCN, ResNet, InceptionTime...)

« ROCKET

Junru Zhang (ZJU)
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Background

InceptionTime

The Inception module uses multiple convolutional kernels of different size.

The network architecture is complex and computationally demanding.

channels

. |\ output
. [(classes

average connected

residual pooling
connections

InceptionTime Architecture (Image source:
Hassan Ismail Fawaz et al. 2020)
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Background
ROCKET Fastand accurate
Initially designed for univariate data

Generate 10,000 random 1D convolution kernels to transform time series
Without training the kernels

Extract 20,000 features from each transformed sequence

Input ] Output Exact Input
l

A univariate
time series | |

10,000 random _
convolutional kernels 10,000 representations 20,000 features
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ROCKET (A. Dempster et al. 2020) Architecture

Junru Zhang (ZJU)
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Background Matr Our warlk Cantributians

ROCKET rast and accurate
Initially designed for univariate data

Generate 10,000 random 1D convolution kernels to transform time series
Without training the kernels

Extract 20,000 features from each transformed sequence

Exact [——— Input
.

10,000 random _
convolutional kernels 10,000 representations 20,000 features

ROCKET Architecture

Junru Zhang (ZJU)
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Background

Problem with exisiting convolution-based methods

As the complexity and number of time series data increase, they becomes

resource-intensive to learn and store the parameters.

Challenging to deploy

O0OC«C
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Background

InceptionTime

X Curse of Dimensionality

X Computational Bottleneck

Q0OC

Higher-dimensional

multivariate time series
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Background

ROCKET
Memory Cost: N X 20,000 X 8 bytes

X Explosive growth in the number of instances N

Memory Cost
A

-

Number of Instances

Linear Scaling of Memory Costs with Increasing Instance Size
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Background Mativatian

Background

Investigate various hyperparameters of the convolutional kernel

o Channel dimension (Input and output channels)

o Temporal dimension (Kernel size and dilation)

1D convolution kernel
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Motivation

Limitations in Hyperparameter Optimization Approaches

X The expensive overhead: Computational costs of trial and error in complex

hyperparameter tuning
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InceptionTime
InceptionTime:16
HIVE-COTE
InceptionTime:8
InceptionTime:4
InceptionTime:64

InceptionTime's search for the optimal configuration through trying various output
channels settings (Image source: Hassan Ismail Fawaz et al. 2020)

Junru Zhang (ZJU)
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Motivation
Limitations in Hyperparameter Optimization Approaches

X The expensive overhead: Computational costs of trial and error in complex
hyperparameter tuning

X Restricted hyperparameter investigation: Neglecting comprehensive evaluation
of its impact on model performance

12 11 10 9 8 7 6 5 4 3 2 1

3 {7, 9, 11} (default)
15 {5,7,9}
{3,5,7} 9
5 {9, 11, 13}
13 11
{11, 13, 15} 7

ROCKET's search for the optimal configuration through trying various
kernel size settings (Image source: A. Dempster et al. 2020)

t2npo4



[Faclkgraund

Motivation

Limitations in Hyperparameter Optimization Approaches

X The expensive overhead: Computational costs of trial and error in complex
hyperparameter tuning

X Restricted hyperparameter investigation: Neglecting comprehensive evaluation
of its impact on model performance

Goal: Create resource-efficient convolution kernels!

v Automatically explore the comprehensive design space of hyperparameters,
rather than relying on random convolution kernels.

i3pp04
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Motivation

Goal: Create resource-efficient convolution kernels!

v Automatically explore the comprehensive design space of hyperparameters,
rather than relying on random convolution kernels.

ROCKET Architecture

Input

Jleatures

A univariate

J\
Resource-

efficient
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Paclkground

Motivation

Popular Hyperparameter Optimization Techniques

Neural Architecture Search (NAS) automates the design of neural networks,

particularly in CV filed.

Search Space

architecture

A

w

Search Strategy

Ae A
T~

\____/

Performance
Estimation
Strategy

performance
estimate of A

Three main components of Neural Architecture Search (NAS)
models. (Image source: Elsken, et al. 2019)

Junru Zhang (ZJU)
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NAS RrRL for Model Automation

Sample architecture A with
probability p

Trains a child network
The controller (RNN) with architecture 4 to

get reward R

t

Compute gradient of p and scale
it by R to update the controller

A high level overview of NAS, containing a
RNN controller and a pipeline for evaluating
child models. (Image source: Zoph & Le 2017)

Junru Zhang (ZJU)

The controller is trained as a reinforcement
learning (RL) task.

e Action space: Alist of candidate networks

e Reward: Accuracy achieved by a candidate network
at convergence

e Loss: Controller optimized using RL loss in NAS to
maximize expected reward (high accuracy) using the

gradient
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Motivation

Goal: Create resource-efficient convolutional kernels!

v Automatically explore the comprehensive design space of hyperparameters,
rather than relying on random convolution kernels.

ldea: Integrate RL agents into convolutional model building for multivariate time
series classification tasks

17134
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Motivation

NAS =L for M§

Cantriutians

Memory The controller is trained as a reinforcement
bottleneck learnina (RL) task.

Trains a child network

The controller (RNN) with architecture 4 to
get reward R

t

Compute gradient of p and scale
it by R to update the controller

A high level overview of NAS, containing a
RNN controller and a pipeline for evaluating
child models. (Image source: Zoph & Le 2017)

Junru Zhang (ZJU)

% Store

Reward: Accuracy achieved by a candidate network
at convergence

Loss: Controller optimized using RL loss in NAS to
maximize expected reward (high accuracy) using the

gradient.
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Motivation

Memory

The controller is trained as a reinforcement
bottleneck

learnina (RL) task.

% Store
¥

Trains a child network : .
The controller (RNN) with architacture A 1o e Reward: Accuracy achieved by a candidate network

get reward R
at convergence
t

. Train Controller optimized using RL loss in NAS to

High maximize expected reward (high accuracy) using the
computational

A high leve head gradient.
RNN controlle Overnea
child models. FUrSY. Zoph & Le 2017)
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[Faclkgraund
Motivation

Goal: Create resource-efficient convolutional kernels!

v Automatically explore the comprehensive design space of hyperparameters,
rather than relying on random convolution kernels.

Idea: Integrate RL agents into convolutional model building for multivariate time
series classification tasks

Research question: How to design an efficient RL agent ?

Junru Zhang (ZJU)
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Faclgraund Moativatiorn

Our work

Method: ADAptive Convolutional KErnel Transform (Adacket)

Automatically generate 1D convolutional kernels to transform specific channels of
Input time series data into discriminative representations.

A sequential decision-making problem using the RL paradigm

At each timestep, the RL agent encodes a specific channel embedding in the MTS data,

preparing to generate and utilize specific convolutional kernels for further transformation.

2irins4
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Our work
Method: ADAptive Convolutional KErnel Transform (Adacket)

Automatically generate 1D convolutional kernels to transform specific channels of
Input time series data into discriminative representations.

RL Agent :

| wput ® qu Wt

q ‘ RL Agent q Action State
« Action Space \ (
Caleulate
Feedback ‘ Reward J

e Reward

o State Space ‘ State Space

22 | 34
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Our work

State Space: The historical observations and

one current observation (i.e., channel embedding)

The channel embedding:

Attribute features associated with this channel,
such as its index, temporal patterns.
Dynamic environment properties, including

resource usage and historical actions.

Junru Zhang (ZJU)
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Resource Output
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Paclkground

Our work

» Action Space: Form a kernel-channel pair to specify the input channels of the MTS

data for a set of convolutional kernels.

At each timestep:

Four output actions values map into input and output channels, kernel size, and dilation.

Channel

~ An MTS Instance
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Baclkgraund Maftivation

Our work

« Aclion Space: Form a kernel-channel pair to specify the input channels of the MTS

data for a set of convolutional kernels.

At each timestep:
Four output actions values map into input and output channels, kernel size, and dilation.

Each action: A continuous value ranging from O to 1.

:\/ Fine-grained convolutional hyperparameters in the channel and temporal dimensions

0 : : :
1V No need to store massive convolutional weights
0

L--------------------------------------------------
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Backgraund Mativatian
Our work

- Reward: A multi-objective metric of candidate convolutional models

Score(M)
ward(M) ={ Score(M
Reward(M) = Score( M )|x € log Resource(M)
Model Resource
performance efficiency

« M is a candidate convolutional model.
o Score(M) is converted from the contrastive loss function (Z. Yue et al. 2021) .

o Resource(M) is the sum of the parameters of the convolutional model and classifier.

e € € |0, 1] Is a trade-off parameter.
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Faclzgraund Mativatian

Our work

- Reward: A multi-objective metric of candidate convolutional models

Score(M)
ward(M
Reward(M) ={Score(M)|x € log Resource(M)

Model Resource
performance efficiency

1
1
:avoid time-consuming training processes.

I . . . .

: Adaptability: The balanced reward function for various resource-constrained
1

scenarios.
e o o o o o e e e -

Junru Zhang (ZJU)



Faclgraund Mativatio

Our work
Method: ADAptive Convolutional KErnel Transform (Adacket)

Automatically generate 1D convolutional kernels to transform specific channels of
Input time series data into discriminative representations.

RL Agent :

o State Space
< DDPG Algorithm

e Action Space

« Reward Actor-critic structure
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________________ RL Agent with DDPG Algorithm 2) Candidate

(1)

Convolutional Model

Sample a kernel-channel (
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Reward
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lllustration of Adacket to introduce one kernel-channel pair
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Faclgraund Moativatiorn

Experiments
Datesets: UEA (30 MTSC tasks)

Baselines: TapNet, ResNet, InceptionTime, ROCKET

* Accuracy
;4 3 ' Adacket outperforms all baseline
TapNet 23007 T 2.5000 A jacket :
methods Iin average accuracy rank
ResNet 3:1500 2.7000 ROCKET J Y
[nceptionTime 2.7833 In MTSC tasks.

CD diagrams for comparing different
methods on all UEA datasets
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Backgraund Mativatian

Experiments
« Computational Efficiency

Method Train Time | Inference Time
InceptionTime  48.55 1.61
ROCKET 1.25 1.58
Adacket 1.61 0.68

Train time (in hours) and inference time (in
seconds) on all UEA datasets.

Junru Zhang (ZJU)

Adacket exhibits significantly faster training
time compared to InceptionTime, similar to

the performance of ROCKET.

Adacket stands out as the fastest method

In terms of inference time, showcasing its

efficient design.
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Experiments
« Resource Efficiency

Dataset  Method Acc | Params Mem
SRS InceptionTime 86.55 [4.685 |-
ROCKET 84.69 |- 42.88
Adacket 89.42 0.021 3.34
HB InceptionTime 73.20 [4.810 -
ROCKET 71.76 |- 32.64
Adacket 77.07 0.012 0.58
DDG  InceptionTime 54.00 7.754 -
ROCKET 46.13 |- 8.00
Adacket 58.00 0.003 0.68

Comparison of accuracy (%), parameters
(MB), and memory cost (MB) of three MTSC

Adacket achieves superior accuracy while utilizing

fewer parameters and less memory.

Adacket's adaptability to dataset characteristics, as
opposed to fixed structures used by InceptionTime

and ROCKET, highlights its flexibility and efficiency.

datasets with different number of channels.

N

s

Junru Zhang (ZJU)
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Contributions

To our best knowledge, Adacket is the first MTSC approach to incorporate RL for

convolutional kernels adaptation.

%?@ Introduce a multi-objective convolutional kernel search method that jointly
optimizes performance and resource efficiency.

ﬁNovelly model a multi-objective issue as a sequential decision-making
problem using the RL paradigm, which enables the automatic design of
convolutional kernels.

9@ Propose a comprehensive search of the convolutional kernel design space
through multiple action spaces.

?@ Adacket exhibits excellent performance on both accuracy and resources.

Junru Zhang (ZJU)
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Questions ?

Presenter: Junru Zhang
junruzhang@zju.edu.cn
Any questions? (ask now or @poster OGR on Tuesday evening)

Discussion and cooperation are welcome.
34/ 34
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